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ABSTRACT

The research supported by AFOSR Grant 76-2923 has led to some significant

results which can be used in the design of optimal controllers when distur-

bances are present. Sufficient conditions which a minmax control must satisfy

were developed for systems with disturbances in the state equation or in the

measurement of the initial state. From these conditions, constructive tech-

niques were developed which can be used to generate minmax controllers.

The second major arc of the research was controllability problems.

Criteria for determining the controllability properties of constrained systems

were derived. The criteria involve finite dimensional optimization problems

and are amenable to computer implementation. -A /
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Sec. I. INTRODUCTION

The research conducted under AFOSR-Grant 76-2923 was mainly concerned with

two general problems. The first is the optimal control of systems with uncer-

tainty and the second is constrained controllability problems. A description

of these problems and the results obtained are given in Section II and

Section III, respectively.

In the course of the research, other problems, which do not fall neatly

into these two categories, also arose. Section III describes these related

problems and our progress toward solvir- them.

Sec. II. Optimal Control of Systems With Uncertainty

In the control of complex systems, uncertainties will usually occur in the

mathematical description of the system. For example, the differential equations

describing the system may not be known exactly or it may not be possible to make

exact measurements of the state of the system. Air Force systems such as air-

to-air missile encounters with an aircraft or missile guidance systems are

examples of such problems. Ignoring uncertainties in the design of controllers

for these systems may result in the actual system performing poorly and inac-

curately. Proper methods for analyzing systems with uncertainty are needed.

The research conducted under AFOSR-Grant 76-2923 has addressed the problem of

the optimal control of systems with uncertainty.

Our approach to these problems is to assume that nature is perverse and

may choose the uncertainty to maximize the performance index which the con-

I troller is trying to minimize. For each control, there is a guaranteed

performance and the optimal control is the one which achieves the best guaran-

1 teed performance. This approach leads quite naturally to the concept of minmax

control. A minmax control has the appealing property of producing the best

possible guaranteed performance. Unlike the stochastic app-oach to uncertainty,

the minmax approach d ,es not require that the statistics of the uncertainty
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be known. This is advantageous since the statistics of the uncertainty are

often difficult to estimate. Also, a minmax control may be more easy to

determine and implement than a stochastic control.

While the main concern of the investigation has been with dynamic minmax

problems, it was felt that it would be worthwhile to also investigate static

problems. The reasons for this are two-fold. First, static problems are

easier to solve than dynamic ones; yet the characteristics of the solutions

of both problems have much in comnmon. A deeper understanding of the static

case is useful in the analysis of dynamic problems. Secondly, the condition

for dynamic minmax problems analogous to Pontryagin's principle involves a

static minmax problem and the results for static minmax problems are used in

the dynamic case.

Necessary conditions and sufficient conditions for static minmax problems

have been developed and are presented in [1]. Later, a simpler derivation of

the necessary condition was reported in [2]. The necessary conditions, in the

form of a Lagrange multiplier rule, can be used to determine candidates for

the solution. The sufficient conditions can be used to verify whether a can-

didate is indeed the solution. Since the sufficient conditions involve a

strengthening of the necessary conditions, they are easy to apply once a

candidate has been obtained.

In some problems, the performance of the system cannot be measured by a

single criterion alone, but multiple criteria are needed. The minmax results

of I'l were extended to problems with multiple criteria in F33. It is also

shown there that solution candidates for the multicriteria case can be obtained

by solving a related problem with a scalar criterion. This simplifies the

effort needed to obtain solutions to problems with multiple criteria.

With dynamic systems, the uncertainty or disturbance may enter the systemI,
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through the state equations or through the initial conditions. First consider

problems with time-varying uncertainty in the state equations. These problems

arise when it is not possible to obtain an exact model of the system. Often

the analysis is carried out by neglecting the uncertainty. However, this may

be too idealized for the analysis to be valid and the actual system may not

perform well. Thus the analysis must take into account the fact that the model

is not exact and the minmax solution concept is an attractive way to treat the

uncertainty since it assures the best possible guatanteed performance. In

practice, nature will probably not be so perverse as to choose the disturbance

to maximize the performance index and the system will perform better than

predicted. However, if a control not having the minmax property is used, the

system may perform decidedly worse than expected. Thus a control having the

minmax property should be used in the design of systems with uncertainty when

there is no a priori knowledge of the value of the uncertainty.

We have developed a sufficient condition which the minmax control must

satisfy [4]. This condition also leads to a method for constructing a minmax

control. It has been shown that the minmax control can be obtained by solving

a related optimal control problem without uncertainty. Thus the well-deve-

loped techniques from deterministic optimal control theory can be used to solve

problems with uncertainty via this related problem. This is thought to be a

4 significant step in the direction of obtaining methods which can be readily

used to solve problems with time varying uncertainty in the state equation.

More recently, a generalization of the condition appeared in [5].

In [6], problems with uncertain initial conditions are treated. In these

problems, the exact value of the initial state is not known. Instead, only an

inexact measurement is available. This is often the case in realistic situa-



tions where, for example, due to hardware limitations, position and velocity

cannot be measured exactly. All that is available is the measured values of

those quantities which equal the true values plus or minus some error. Our

results were obtained by using a transformation which transforms the original

problem with uncertainty in the initial state to one with the initial state

known but with parameter uncertainty in the state equation. The latter prob-

lem is simpler to solve. It can be shown that the solution of the new problem

is a solution to the original one with uncertain initial condition. Through

this observation,we are able to present a constructive technique for finding

the minmax control and also a sufficient condition which can be used to verify

that a control has the minmax property.

As a by-product, our techniques can also be used to solve some problems

where there is parameter uncertainty in the state equation (rather than time-

varying uncertainty). Parameter uncertainty often occurs in the system model

when there is a lack of experimental data so that the exact values of the

parameters in the model are unknown.

The above research on optimal control problems with uncertainty was

directed toward problems where the performance of the system could be measured

by a single, scalar performance index. However, in many practical problems

one has to deal with multiple (and possible conflicting) objectives. These

multicriteria problems do not, in general, have a best solution in the sense

I.! that there is a control function which simultaneously minimizes all the

performance measures. While there is no universally accepted solution con-

cept for such problems, one would agree that a good solution must not be domi-

nated by any other admissible solution. This leads to the concept of Pareto

optimality as an optimality criterion for problems with multiple performance

measures.
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Various techniques are available for determining Pareto optimal solu-

tions when there is no uncertainty in the system, but these results do not

apply when disturbances are present in the system's differential equations.

We have extended the techniques we developed for problems with disturbances

and a scalar performance index to problems with multiple performance indices "71.

These results can be used to obtain minmax solutions with the Pareto optimal

property when disturbances are present.

In summary, we derivea sufficient conditions which the minmax control

must satisfy and, using these conditions, constructive techniques were deve-

loped which can be used to generate minmax solutions. These methods are now

available for solving minmax problems and can be used to analyze problems where

there is uncertainty in the model or in the measurement of the initial state.

They will aid in the design of systems where exact models of the system are not

available or where exact measurements of the state of the system cannot be

obtained.

Sec. III Constrained Controllability

A fundamental problem associated with the design of control systems is

that of controllability. The controllability problem is to determine if there

is a control, satisfying specified magnitude constraints, which steers the

system to a given target from a particular initial state. In some cases,

we may want to reach the target from every possible initial state and this

is called the global controllability problem. The class of systems we have

analyzed are those described by ordinary differential equations:

E(t) = A(t)x(t) + f(tu(t)).

Here x(t) ( Rm is the state and u(t) E Rm is the control. Magnitude constraints

mare imposed by requiring u(t) 2, where C^ is a prespecified set in R . The

target set X is a given subset of Rn .



Methods for checking the controllability properties of a system have been

developed. Our criteria have the advantage of being finite dimensional, rather

than infinite dimensional. This advantage is quite important from a computa-

tional viewpoint. In addition, we have devised some procedures for determining

a steering control. Our results have been reported for problems where the

target set X is the origin F8], where X is a general closed, convex set [91

where X is affineF10], i.e., X = {x: Lx = a 3 and where X is any arbitrary set 1I].

These papers treat the global problem as well as the problem of controllability

from a particular initial state. We have also obtained local controllability

results [12].

Recently, we extended our techniques to problems where disturbances are

present [13]. In these problems, we want to guarantee that a system can be

steered to the target even though unknown disturbances may be acting. Criteria

for a~ialyzing such problems have been developed.

Closely related to the controllability problem are the holding problem

and avoidance problem. Our study has derived conditions for determining whether

a system can be held in a specified set or steered to avoid a given set 714].

Sec. IV. Other Results

In the course of our research, we have encountered several problems which

do not fit into the areas discussed in Sec. II and Sec. III. In this section,

we describe such problems and the results of our investigation.

The derivation of sufficient conditions for minmax control (see Sec. II)

is based on methods from optimal control theory. While carrying out this

derivation, an interesting feature of the direct sufficient conditions for

optimal control problems was discovered. Several papers have suggested that

i!
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nonautonomous optimal control problems (problems where time appears explicitly

in the different equations or in the performance index) be treated by making

a transformation which eliminates the explicit dependence on time. However,

we discovered that if such a transformation is made, one may not be able to

reach any conclusion about sufficiency whereas sufficiency can be established

if the problem is treated in its original, nonautonomous form. The details

of the results are reported in r151.

Another problem which was inves.:igated is the application of differen-

tial game theory to the problem of two firms attempting to maximize profits

through advertising 7161. Various solution concepts, including minmax, are

examined and the resulting advertising strategies and payoffs compared.

A distributed parameter optimal control problem was al-o studied F17J.

Specifically, a solution to the problem of controlling the temperature dis-

tribution in a semi-infinite rod was determined. The solution was obtained

by showing that this distributed parameter problem can be reformulated as

a calculus of variation problem and applying results from the available theory

for calculus of variation problems.

Another distributed parameter problem was also considered. This is the

problem of reducing the drag force experienced by a solid body moving

through a viscous fluid by the injection or suction of fluid at the body

surface F18,. This is a multicriteria problem since there are three quan-

tities which we want to minimize, namely, the square of the drag force, the

square of the shear stress and the energy being expended through the use of

mass flux. For this multicriteria problem, we have obtained the Pareto

optimal solutions.
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Target-Part I - Linear Systems with Origin as Target" and"Part II -

Nonlinear Systems with a General Target."

10. 1979 IEEE Conference on Decision and Control, Fort Lauderdale, Florida.

11. Optimization Days 1930, Montreal, Canada, "Controllability Criteria
for Systems with Disturbances."

12. 1980 Joint Automatic Control Conference, "Avoidance Control and
Holding Control."

13. 1980 Conference on Decision and Control, "Controlling a System to
a Non-Conve:: Target."
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C. OTHER INVITED LECTURES

"Minmax Problems," Michigan State University, East Lansing, Mich.,
November 1977.

"Controlling Systems with Uncertainty," University of Rochester,
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"Constrained Controllability," Michigan State University, East

Lansing, Mich., April, 1980.
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